

Safety Data Sheet

Copyright, 2015, Meguiar's, Inc. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilising Meguiar's, Inc. products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from Meguiar's, Inc., and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document group:
 27-7631-8
 Version number:
 7.00

 Revision date:
 27/08/2015
 Supersedes date:
 23/03/2015

Transportation version number: 1.00 (18/08/2010)

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (EC) 1907/2006 and its modifications.

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Meguiar's Ultimate Compound, G172

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Automotive

1.3. Details of the supplier of the safety data sheet

Address: Meguiars United Kingdom Limited, 3 Lamport Court, Heartlands, Daventry, Northants, NN11 8UF

Telephone: +44 (0)870 241 6696 E Mail: info@meguiars.co.uk Website: www.meguiars.co.uk

1.4. Emergency telephone number

+44 (0)870 241 6696

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

CLP REGULATION (EC) No 1272/2008

CLASSIFICATION:

Skin Corrosion/Irritation, Category 2 - Skin Irrit. 2; H315 Specific Target Organ Toxicity-Repeated Exposure, Category 2 - STOT RE 2; H373

For full text of H phrases, see Section 16.

2.2. Label elements

CLP REGULATION (EC) No 1272/2008

SIGNAL WORD

WARNING.

Symbols:

GHS07 (Exclamation mark) | GHS08 (Health Hazard) |

Pictograms

Ingredient CAS Nbr % by Wt Solvent naphtha (petroleum), medium aliphatic 64742-88-7 7 - 13

HAZARD STATEMENTS:

H315 Causes skin irritation.

H373 May cause damage to organs through prolonged or repeated exposure: nervous system

PRECAUTIONARY STATEMENTS

General:

P101 If medical advice is needed, have product container or label at hand.

P102 Keep out of reach of children.

Prevention:

P260A Do not breathe vapours.
P260B Do not breathe dust.

Response:

P332 + P313 If skin irritation occurs: Get medical advice/attention.

Disposal:

P501 Dispose of contents/container in accordance with applicable local/regional/national/international

regulations.

SUPPLEMENTAL INFORMATION

Supplemental Hazard Statements:

EUH208 Contains Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-

isothiazol-3-one. May produce an allergic reaction.

Contains 11% of components with unknown hazards to the aquatic environment.

Notes on labelling

H304 is not required on the label due to the product's viscosity

Nota P applies for CASRN 64742-48-9

2.3. Other hazards

None known.

SECTION 3: Composition/information on ingredients

Ingredient CAS Nor EU Inventory % by wt Classification	Ingredient	CAS Nbr	EU Inventory % by Wt	Classification
--	------------	---------	----------------------	----------------

Non-Hazardous Ingredients	Mixture		60 - 90	
Solvent naphtha (petroleum), medium aliphatic	64742-88-7	EINECS 265- 191-7	7 - 13	Asp. Tox. 1, H304; STOT RE 1, H372 (CLP) Flam. Liq. 3, H226; Skin Irrit. 2, H315 (Self Classified)
White mineral oil (petroleum)	8042-47-5	EINECS 232- 455-8	7 - 13	Asp. Tox. 1, H304 (Self Classified)
Aluminium Oxide (non-fibrous)	1344-28-1	EINECS 215- 691-6	1 - 10	
Naphtha (petroleum), hydrotreated heavy	64742-48-9	EINECS 265- 150-3	1 - 5	Asp. Tox. 1, H304 - Nota P (CLP) Skin Irrit. 2, H315; STOT SE 3, H336 (Self Classified)
PEG Stearate	9004-99-3		0.1 - 1	Aquatic Acute 1, H400,M=1; Aquatic Chronic 3, H412 (Self Classified)
Glycerin	56-81-5	EINECS 200- 289-5	0.1 - 1	
Triethanolamine	102-71-6	EINECS 203- 049-8	0.1 - 1	
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	55965-84-9		< 0.01	Acute Tox. 3, H331; Acute Tox. 3, H311; Acute Tox. 3, H301; Skin Corr. 1B, H314; Skin Sens. 1A, H317; Aquatic Acute 1, H400,M=10; Aquatic Chronic 1, H410,M=10 (CLP)

Please see section 16 for the full text of any H statements referred to in this section

Please refer to section 15 for any applicable Notas that have been applied to the above components

For information on ingredient occupational exposure limits or PBT or vPvB status, see sections 8 and 12 of this SDS

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eye contact

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1 Information on toxicological effects

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

Closed containers exposed to heat from fire may build pressure and explode.

Hazardous Decomposition or By-Products

<u>Substance</u> <u>Condition</u>

Carbon monoxide.

Carbon dioxide.

During combustion.

During combustion.

During combustion.

During combustion.

5.3. Advice for fire-fighters

Water may not effectively extinguish fire; however, it should be used to keep fire-exposed containers and surfaces cool and prevent explosive rupture.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapours, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment. For larger spills, cover drains and build dykes to prevent entry into sewer systems or bodies of water.

6.3. Methods and material for containment and cleaning up

Contain spill. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue with detergent and water. Seal the container. Dispose of collected material as soon as possible.

6.4. Reference to other sections

Refer to Section 8 and Section 13 for more information

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Keep out of reach of children. Avoid breathing dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidising agents.

7.3. Specific end use(s)

See information in Section 7.1 and 7.2 for handling and storage recommendations. See Section 8 for exposure controls and personal protection recommendations.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient **Additional comments CAS Nbr** Limit type Agency Aluminium Oxide (non-fibrous) UK HSC 1344-28-1 TWA(as inhalable dust):10 mg/m³;TWA(as respirable dust):4 mg/m³ Glycerin 56-81-5 TWA(as mist):10 mg/m3 UK HSC Naphtha (petroleum), 64742-48-9 Manufacturer TWA:100 ppm determined

hydrotreated heavy

UK HSC: UK Health and Safety Commission

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

Biological limit values

No biological limit values exist for any of the components listed in Section 3 of this safety data sheet.

8.2. Exposure controls

8.2.1. Engineering controls

Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety glasses with side shields.

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing.

Gloves made from the following material(s) are recommended:

Material	Thickness (mm)	Breakthrough Time
Fluoroelastomer	0.4	> 8 hours
Nitrile rubber.	0.35	> 8 hours

The glove data presented are based on the substance driving dermal toxicity and the conditions present at the time of testing. Breakthrough time may be altered when the glove is subjected to use conditions that place additional stress on the glove.

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapours and particulates

For questions about suitability for a specific application, consult with your respirator manufacturer.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state Liquid

Appearance/Odour Sweet hydrocarbon Odour; Creamy White

Odour threshold *No data available.*

pH 8

Boiling point/boiling range 193.3 °C

Melting pointNo data available.Flammability (solid, gas)Not applicable.Explosive propertiesNot classifiedOxidising propertiesNot classified

Flash point > 93.3 °C [Test Method:Closed Cup]

Autoignition temperatureNo data available.Flammable Limits(LEL)No data available.Flammable Limits(UEL)No data available.

Relative density 1.18 [*Ref Std*:WATER=1]

Water solubility Moderate

Solubility- non-water

Partition coefficient: n-octanol/water

Evaporation rate

Vapour density

Decomposition temperature

Viscosity

No data available.
No data available.
No data available.
No data available.
22 - 40 Pa-s
1.18 g/ml

9.2. Other information

Volatile organic compounds (VOC) 10.8 % weight Volatile organic compounds (VOC) 259.6 g/l

SECTION 10: Stability and reactivity

10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3 Possibility of hazardous reactions

Hazardous polymerisation will not occur.

10.4 Conditions to avoid

Heat.

10.5 Incompatible materials

Strong acids.

Strong oxidising agents.

Strong bases.

10.6 Hazardous decomposition products Substance

Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 11 are based on UN GHS calculation rules and classifications derived from 3M assessments.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain.

Skin contact

Skin Irritation: Signs/symptoms may include localised redness, swelling, itching, dryness, cracking, blistering, and pain.

Eye contact

Dust created by cutting, grinding, sanding, or machining may cause eye irritation: Signs/symptoms may include redness, swelling, pain, tearing, and blurred or hazy vision.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Aluminium Oxide (non-fibrous)	Dermal		LD50 estimated to be > 5,000 mg/kg
Aluminium Oxide (non-fibrous)	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 2.3 mg/l
Aluminium Oxide (non-fibrous)	Ingestion	Rat	LD50 > 5,000 mg/kg
White mineral oil (petroleum)	Dermal	Rabbit	LD50 > 2,000 mg/kg
White mineral oil (petroleum)	Ingestion	Rat	LD50 > 5,000 mg/kg
Solvent naphtha (petroleum), medium aliphatic	Inhalation- Vapor		LC50 estimated to be 20 - 50 mg/l
Solvent naphtha (petroleum), medium aliphatic	Dermal	Rabbit	LD50 > 3,000 mg/kg
Solvent naphtha (petroleum), medium aliphatic	Ingestion	Rat	LD50 > 5,000 mg/kg
Naphtha (petroleum), hydrotreated heavy	Inhalation- Vapor		LC50 estimated to be 20 - 50 mg/l
Naphtha (petroleum), hydrotreated heavy	Dermal	Rabbit	LD50 > 3,000 mg/kg
Naphtha (petroleum), hydrotreated heavy	Ingestion	Rat	LD50 > 5,000 mg/kg
Triethanolamine	Dermal	Rabbit	LD50 > 2,000 mg/kg
Triethanolamine	Ingestion	Rat	LD50 9,000 mg/kg
Glycerin	Dermal	Rabbit	LD50 estimated to be > 5,000 mg/kg

Glycerin	Ingestion	Rat	LD50 > 5,000 mg/kg
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-	Dermal	Rabbit	LD50 87 mg/kg
2H-isothiazol-3-one			
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-	Inhalation-	Rat	LC50 0.33 mg/l
2H-isothiazol-3-one	Dust/Mist		
	(4 hours)		
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-	Ingestion	Rat	LD50 40 mg/kg
2H-isothiazol-3-one			

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Aluminium Oxide (non-fibrous)	Rabbit	No significant irritation
White mineral oil (petroleum)	Rabbit	No significant irritation
Solvent naphtha (petroleum), medium aliphatic	Rabbit	Irritant
Naphtha (petroleum), hydrotreated heavy	Rabbit	Irritant
Triethanolamine	Rabbit	Minimal irritation
Glycerin	Rabbit	No significant irritation
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-	Rabbit	Corrosive
one		

Serious Eye Damage/Irritation

Name	Species	Value
	Species	, mae
Aluminium Oxide (non-fibrous)	Rabbit	No significant irritation
White mineral oil (petroleum)	Rabbit	Mild irritant
Solvent naphtha (petroleum), medium aliphatic	Rabbit	No significant irritation
Naphtha (petroleum), hydrotreated heavy	Rabbit	No significant irritation
Triethanolamine	Rabbit	Mild irritant
Glycerin	Rabbit	No significant irritation
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-	Rabbit	Corrosive
one		

Skin Sensitisation

Name	Species	Value
White mineral oil (petroleum)	Guinea	Not sensitising
, me imical on (perocean)	pig	Two bending
Solvent naphtha (petroleum), medium aliphatic	Guinea	Not sensitising
	pig	
Naphtha (petroleum), hydrotreated heavy	Guinea	Not sensitising
	pig	
Triethanolamine	Human	Some positive data exist, but the data are not sufficient for classification
Glycerin	Guinea	Not sensitising
	pig	
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-	Human	Sensitising
one	and	
	animal	

Photosensitisation

Name	Species	Value
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-	Human	Not sensitising
one	and	_
	animal	

Respiratory Sensitisation

For the component/components, either no data is currently available or the data is not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value

Aluminium Oxide (non-fibrous)	In Vitro	Not mutagenic
White mineral oil (petroleum)	In Vitro	Not mutagenic
Solvent naphtha (petroleum), medium aliphatic	In vivo	Not mutagenic
Solvent naphtha (petroleum), medium aliphatic	In Vitro	Some positive data exist, but the data are not sufficient for classification
Naphtha (petroleum), hydrotreated heavy	In vivo	Not mutagenic
Naphtha (petroleum), hydrotreated heavy	In Vitro	Some positive data exist, but the data are not sufficient for classification
Triethanolamine	In Vitro	Not mutagenic
Triethanolamine	In vivo	Not mutagenic
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-	In vivo	Not mutagenic
one		
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	In Vitro	Some positive data exist, but the data are not sufficient for classification

Carcinogenicity

Name	Route	Species	Value
Aluminium Oxide (non-fibrous)	Inhalation	Rat	Not carcinogenic
White mineral oil (petroleum)	Dermal	Mouse	Not carcinogenic
White mineral oil (petroleum)	Inhalation	Multiple animal species	Not carcinogenic
Solvent naphtha (petroleum), medium aliphatic	Dermal	Mouse	Some positive data exist, but the data are not sufficient for classification
Solvent naphtha (petroleum), medium aliphatic	Inhalation	Human and animal	Some positive data exist, but the data are not sufficient for classification
Naphtha (petroleum), hydrotreated heavy	Dermal	Mouse	Some positive data exist, but the data are not sufficient for classification
Naphtha (petroleum), hydrotreated heavy	Inhalation	Human and animal	Some positive data exist, but the data are not sufficient for classification
Triethanolamine	Dermal	Multiple animal species	Not carcinogenic
Triethanolamine	Ingestion	Mouse	Some positive data exist, but the data are not sufficient for classification
Glycerin	Ingestion	Mouse	Some positive data exist, but the data are not sufficient for classification
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Dermal	Mouse	Not carcinogenic
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Ingestion	Rat	Not carcinogenic

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
White mineral oil (petroleum)	Ingestion	Not toxic to female reproduction	Rat	NOAEL 4,350 mg/kg/day	13 weeks
White mineral oil (petroleum)	Ingestion	Not toxic to male reproduction	Rat	NOAEL 4,350 mg/kg/day	13 weeks
White mineral oil (petroleum)	Ingestion	Not toxic to development	Rat	NOAEL 4,350 mg/kg/day	during gestation
Solvent naphtha (petroleum), medium aliphatic	Inhalation	Not toxic to development	Rat	NOAEL 2.4 mg/l	during organogenesis
Naphtha (petroleum), hydrotreated heavy	Inhalation	Not toxic to development	Rat	NOAEL 2.4 mg/l	during organogenesis
Triethanolamine	Ingestion	Not toxic to development	Mouse	NOAEL 1,125	during organogenesis

Page: 9 of 17

				mg/kg/day	
Glycerin	Ingestion	Not toxic to female reproduction	Rat	NOAEL 2,000 mg/kg/day	2 generation
Glycerin	Ingestion	Not toxic to male reproduction	Rat	NOAEL 2,000 mg/kg/day	2 generation
Glycerin	Ingestion	Not toxic to development	Rat	NOAEL 2,000 mg/kg/day	2 generation
Mixture of 5-chloro-2-methyl-2H- isothiazol-3-one and 2-methyl-2H- isothiazol-3-one	Ingestion	Not toxic to female reproduction	Rat	NOAEL 10 mg/kg/day	2 generation
Mixture of 5-chloro-2-methyl-2H- isothiazol-3-one and 2-methyl-2H- isothiazol-3-one	Ingestion	Not toxic to male reproduction	Rat	NOAEL 10 mg/kg/day	2 generation
Mixture of 5-chloro-2-methyl-2H- isothiazol-3-one and 2-methyl-2H- isothiazol-3-one	Ingestion	Not toxic to development	Rat	NOAEL 15 mg/kg/day	during organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Solvent naphtha (petroleum), medium aliphatic	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human and animal	NOAEL Not available	
Solvent naphtha (petroleum), medium aliphatic	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification		NOAEL Not available	
Solvent naphtha (petroleum), medium aliphatic	Inhalation	nervous system	Some positive data exist, but the data are not sufficient for classification	Dog	NOAEL 6.5 mg/l	4 hours
Solvent naphtha (petroleum), medium aliphatic	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professio nal judgeme nt	NOAEL Not available	
Naphtha (petroleum), hydrotreated heavy	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human and animal	NOAEL Not available	
Naphtha (petroleum), hydrotreated heavy	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification		NOAEL Not available	
Naphtha (petroleum), hydrotreated heavy	Inhalation	nervous system	Some positive data exist, but the data are not sufficient for classification	Dog	NOAEL 6.5 mg/l	4 hours
Naphtha (petroleum), hydrotreated heavy	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professio nal judgeme nt	NOAEL Not available	
Mixture of 5-chloro-2- methyl-2H-isothiazol-3- one and 2-methyl-2H- isothiazol-3-one	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Aluminium Oxide (non- fibrous)	Inhalation	pneumoconiosis pulmonary fibrosis	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	occupational exposure
White mineral oil (petroleum)	Ingestion	hematopoietic system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 1,381 mg/kg/day	90 days
White mineral oil (petroleum)	Ingestion	liver immune system	Some positive data exist, but the data are not sufficient for	Rat	NOAEL 1,336	90 days

Page: 10 of 17

			classification		mg/kg/day	
Solvent naphtha (petroleum), medium	Inhalation	nervous system	Some positive data exist, but the data are not sufficient for	Rat	LOAEL 4.6 mg/l	6 months
aliphatic Solvent naphtha (petroleum), medium aliphatic	Inhalation	kidney and/or bladder	classification Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 1.9 mg/l	13 weeks
Solvent naphtha (petroleum), medium aliphatic	Inhalation	respiratory system	Some positive data exist, but the data are not sufficient for classification	Multiple animal species	NOAEL 0.6 mg/l	90 days
Solvent naphtha (petroleum), medium aliphatic	Inhalation	bone, teeth, nails, and/or hair blood liver muscles	All data are negative	Rat	NOAEL 5.6 mg/l	12 weeks
Solvent naphtha (petroleum), medium aliphatic	Inhalation	heart	All data are negative	Multiple animal species	NOAEL 1.3 mg/l	90 days
Naphtha (petroleum), hydrotreated heavy	Inhalation	nervous system	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 4.6 mg/l	6 months
Naphtha (petroleum), hydrotreated heavy	Inhalation	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 1.9 mg/l	13 weeks
Naphtha (petroleum), hydrotreated heavy	Inhalation	respiratory system	Some positive data exist, but the data are not sufficient for classification	Multiple animal species	NOAEL 0.6 mg/l	90 days
Naphtha (petroleum), hydrotreated heavy	Inhalation	bone, teeth, nails, and/or hair blood liver muscles	All data are negative	Rat	NOAEL 5.6 mg/l	12 weeks
Naphtha (petroleum), hydrotreated heavy	Inhalation	heart	All data are negative	Multiple animal species	NOAEL 1.3 mg/l	90 days
Triethanolamine	Dermal	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Multiple animal species	NOAEL 2,000 mg/kg/day	2 years
Triethanolamine	Dermal	liver	Some positive data exist, but the data are not sufficient for classification	Mouse	NOAEL 4,000 mg/kg/day	13 weeks
Triethanolamine	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 1,000 mg/kg/day	2 years
Triethanolamine	Ingestion	liver	Some positive data exist, but the data are not sufficient for classification	Guinea pig	NOAEL 1,600 mg/kg/day	24 weeks
Glycerin	Inhalation	respiratory system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 3.91 mg/l	14 days
Glycerin	Inhalation	heart liver kidney and/or bladder	All data are negative	Rat	NOAEL 3.91 mg/l	14 days
Glycerin	Ingestion	endocrine system hematopoietic system liver kidney and/or bladder	All data are negative	Rat	NOAEL 10,000 mg/kg/day	2 years

Aspiration Hazard

Name	Value					
White mineral oil (petroleum)	Aspiration hazard					
Solvent naphtha (petroleum), medium aliphatic	Aspiration hazard					
Naphtha (petroleum), hydrotreated heavy	Aspiration hazard					

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 12 are based on UN GHS calculation rules and classifications derived from 3M assessments.

12.1. Toxicity

No product test data available.

CAS Nbr	Organism	Type	Exposure	Test endpoint	Test result
55965-84-9	Diatom	Experimental	72 hours	EC50	0.021 mg/l
55965-84-9	Water flea	Experimental	48 hours	EC50	0.18 mg/l
56.01.5	0.11 0.6	T 1	40.1	1.050	. 100 /1
					>100 mg/l
	_				>100 mg/l
1344-28-1	Water flea	Experimental	48 hours	EC50	>100 mg/l
1244 20 1	E: 1	T 1	061	1.050	. 100 /1
1344-28-1	Fish	Experimental	96 hours	LC50	>100 mg/l
1244 20 1	C 1	F	70.1	E050	> 100 /1
1344-28-1	Green algae	Experimental	/2 nours	ECSU	>100 mg/l
0004 00 2	Zahra Eigh	Estimated	06 hauma	I C50	0.65 mg/l
					0.72 mg/l
	_				
					0.64 mg/l
102-/1-6	Green algae	Experimental	/2 nours	EC30	216 mg/l
102-71-6	Water flea	Experimental	48 hours	EC50	609.98 mg/l
102 / 1 0	, ator rica	Emperimentar	lo nouis	200	00).90 mg/1
102-71-6	Fathead	Experimental	96 hours	LC50	11,800 mg/l
102 / 1 0		Z.ip vi i i i vi	3 110 613		11,000 1118/1
8042-47-5	_	Experimental	96 hours	Lethal Level	>100 mg/l
· · ·		Tr		50%	
55965-84-9	Diatom	Experimental	72 hours		0.01 mg/l
		1			
		55965-84-9 Diatom 55965-84-9 Water flea 56-81-5 Golden Orfe 56-81-5 Water flea 1344-28-1 Fish 1344-28-1 Green algae 9004-99-3 Green algae 102-71-6 Green algae 102-71-6 Water flea 102-71-6 Fathead minnow 8042-47-5 Bluegill	55965-84-9 Diatom Experimental 56-81-5 Golden Orfe Experimental 56-81-5 Water flea Experimental 1344-28-1 Water flea Experimental 1344-28-1 Fish Experimental 1344-28-1 Green algae Experimental 9004-99-3 Zebra Fish Estimated 9004-99-3 Water flea Estimated 9004-99-3 Green algae Estimated 102-71-6 Green algae Experimental 102-71-6 Fathead Experimental	55965-84-9 Water flea Experimental 48 hours 56-81-5 Golden Orfe Experimental 48 hours 56-81-5 Water flea Experimental 24 hours 1344-28-1 Water flea Experimental 48 hours 1344-28-1 Fish Experimental 96 hours 1344-28-1 Green algae Experimental 72 hours 9004-99-3 Zebra Fish Estimated 96 hours 9004-99-3 Water flea Estimated 48 hours 9004-99-3 Green algae Estimated 48 hours 102-71-6 Green algae Experimental 72 hours 102-71-6 Fathead Experimental 48 hours 102-71-6 Fathead Experimental 96 hours	Experimental 72 hours EC50

Page: 12 of 17

one						
Aluminium	1344-28-1	Green algae	Experimental	72 hours	NOEC	>100 mg/l
Oxide (non-						
fibrous)						
PEG Stearate	9004-99-3	Green algae	Estimated	72 hours	NOEC	0.25 mg/l
Triethanolamin	102-71-6	Water flea	Experimental	21 days	NOEC	16 mg/l
e						
White mineral	8042-47-5	Water flea	Experimental	21 days	NOEC	>100 mg/l
oil (petroleum)						
Solvent	64742-88-7		Data not			
naphtha			available or			
(petroleum),			insufficient for			
medium			classification			
aliphatic						
Naphtha	64742-48-9		Data not			
(petroleum),			available or			
hydrotreated			insufficient for			
heavy			classification			

12.2. Persistence and degradability

Material	CAS Nbr	Test type	Duration	Study Type	Test result	Protocol
Aluminium	1344-28-1	Data not	N/A	N/A	N/A	N/A
Oxide (non-		available or				
fibrous)		insufficient for				
		classification				
Mixture of 5-	55965-84-9	Data not	N/A	N/A	N/A	N/A
chloro-2-		available or				
methyl-2H-		insufficient for				
isothiazol-3-		classification				
one and 2-						
methyl-2H-						
isothiazol-3-						
one						
Non-Hazardous	Mixture	Data not	N/A	N/A	N/A	N/A
Ingredients		available or				
		insufficient for				
		classification				
Solvent	64742-88-7	Data not	N/A	N/A	N/A	N/A
naphtha		available or				
(petroleum),		insufficient for				
medium		classification				
aliphatic						
Naphtha	64742-48-9	Data not	N/A	N/A	N/A	N/A
(petroleum),		available or				
hydrotreated		insufficient for				
heavy		classification				
PEG Stearate	9004-99-3	Estimated	28 days	CO2 evolution	85.3 % weight	OECD 301B - Modified
		Biodegradation				sturm or CO2
Glycerin	56-81-5	Experimental	14 days	BOD	63 % weight	OECD 301C - MITI
		Biodegradation				test (I)
Triethanolamin	102-71-6	Experimental	19 days	Dissolv.	96 % weight	OECD 301E - Modified
e		Biodegradation		Organic		OECD Scre
				Carbon Deplet		
White mineral	8042-47-5	Experimental	28 days	CO2 evolution	0 % weight	OECD 301B - Modified

Page: 13 of 17

oil (petroleum) Biodegradation	sturm or CO2
--------------------------------	--------------

12.3: Bioaccumulative potential

Material	CAS Nbr	Test type	Duration	Study Type	Test result	Protocol
Aluminium Oxide (non- fibrous)	1344-28-1	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
White mineral oil (petroleum)	8042-47-5	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Mixture of 5- chloro-2- methyl-2H- isothiazol-3- one and 2- methyl-2H- isothiazol-3- one	55965-84-9	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Non-Hazardous Ingredients	Mixture	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Solvent naphtha (petroleum), medium aliphatic	64742-88-7	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
PEG Stearate	9004-99-3	Estimated Bioconcentrati on		Bioaccumulatio n factor	5.5	Estimated: Bioconcentration factor
Triethanolamin e		Experimental Bioconcentrati on		Log Kow	-1	Other methods
Naphtha (petroleum), hydrotreated heavy	64742-48-9	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Glycerin	56-81-5	Experimental Bioconcentrati on		Log Kow	-1.76	Other methods

12.4. Mobility in soil

Please contact manufacturer for more details

12.5. Results of the PBT and vPvB assessment

No information available at this time, contact manufacturer for more details

12.6. Other adverse effects

No information available.

SECTION 13: Disposal considerations

Page: 14 of 17

13.1 Waste treatment methods

See Section 11.1 Information on toxicological effects

Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate uncured product in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes. Empty drums/barrels/containers used for transporting and handling hazardous chemicals (chemical substances/mixtures/preparations classified as Hazardous as per applicable regulations) shall be considered, stored, treated & disposed of as hazardous wastes unless otherwise defined by applicable waste regulations. Consult with the respective regulating authorities to determine the available treatment and disposal facilities.

The coding of a waste stream is based on the application of the product by the consumer. Since this is out of the control of the manufacturer, no waste code(s) for products after use will be provided. Please refer to the European Waste Code (EWC - 2000/532/CE and amendments) to assign the correct waste code to your waste stream. Ensure national and/or regional regulations are complied with and always use a licensed waste contractor

EU waste code (product as sold)

20 01 27* Paint, inks, adhesives and resins containing dangerous substances

SECTION 14: Transportation information

IATA: Not restricted for transport. ADR: Not restricted for transport. IMDG: Not restricted for transport.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Carcinogenicity

<u>Ingredient</u>	<u>CAS Nbr</u>	<u>Classification</u>	<u>Regulation</u>
Triethanolamine	102-71-6	Gr. 3: Not classifiable	International Agency
			for Research on Cancer

Global inventory status

Contact manufacturer for more information The components of this material are in compliance with the China "Measures on Environmental Management of New Chemical Substance". Certain restrictions may apply. Contact the selling division for additional information. The components of this material are in compliance with the provisions of the Korean Toxic Chemical Control Law. Certain restrictions may apply. Contact the selling division for additional information. The components of this material are in compliance with the provisions of Australia National Industrial Chemical Notification and Assessment Scheme (NICNAS). Certain restrictions may apply. Contact the selling division for additional information. The components of this product are in compliance with the new substance notification requirements of CEPA. The components of this product are in compliance with the chemical notification requirements of TSCA.

15.2. Chemical Safety Assessment

Not applicable

SECTION 16: Other information

List of relevant H statements

H226 Flammable liquid and vapour.

H301 Toxic if swallowed.

H304 May be fatal if swallowed and enters airways.

H311	Toxic in contact with skin.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H331	Toxic if inhaled.
H372	Causes damage to organs through prolonged or repeated exposure.
H373	May cause damage to organs through prolonged or repeated exposure.
H400	Very toxic to aquatic life.
H410	Very toxic to aquatic life with long lasting effects.
H412	Harmful to aquatic life with long lasting effects.

Revision information:

Section 2: Indication of danger information information was deleted.

Label: CLP Classification information was modified.

Label: CLP Target Organ Hazard Statement information was modified.

Label: Graphic Text information was deleted.

Label: Graphic information was deleted.

Label: Signal Word information was modified.

Section 2: Label ingredient information information was deleted.

Section 2: R phrase reference information was deleted.

Remark (phrase) information was deleted.

Risk phrase information was deleted.

Safety phrase information was deleted.

Section 3: Composition/Information of ingredients table information was modified.

Section 3: Reference to H statement explanation in Section 016 information was added.

Section 3: Reference to R and H statement explanation in Section 16 information was deleted.

Section 3: Reference to section 15 for Nota info information was modified.

Section 6: Accidental release personal information information was modified.

Section 8: glove data value information was added.

Section 8: glove data value information was modified.

Section 8: Occupational exposure limit table information was modified.

Section 9: Property description for optional properties information was modified.

Section 11: Acute Toxicity table information was modified.

Section 11: Aspiration Hazard Table information was modified.

Section 11: Carcinogenicity Table information was modified.

Section 11: Germ Cell Mutagenicity Table information was modified.

Section 11: Health Effects - Ingestion information information was modified.

Section 11: Health Effects - Inhalation information information was modified.

Section 11: Health Effects - Skin information information was modified.

Photosensitisation Table information was modified.

Section 11: Reproductive Toxicity Table information was modified.

Section 11: Serious Eye Damage/Irritation Table information was modified.

Section 11: Skin Corrosion/Irritation Table information was modified.

Section 11: Skin Sensitization Table information was modified.

Section 11: Target Organs - Repeated Table information was modified.

Section 11: Target Organs - Single Table information was modified.

Section 12: Component ecotoxicity information information was modified.

Prints No Data if Adverse effects information is not present information was added.

Section 12: No PBT/vPvB information available warning information was added.

Section 12: PBT/vPvB table row information was deleted.

Section 12: Persistence and Degradability information information was modified.

Section 12:Bioccumulative potential information information was modified.

Section 13: EU waste code (product as sold) information information was modified.

Section 14: Transportation classification information was modified.

Section 15: Label remarks and EU Detergent information was added.

Page: 16 of 17

Section 15: Regulations - Inventories information was modified.

Section 16: List of relevant R phrase information information was deleted.

Section 16: List of relevant R-phrases information was deleted.

Two-column table displaying the unique list of H Codes and statements (std phrases) for all components of the given material. information was modified.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Meguiar's, Inc. United Kingdom MSDSs are available at www.meguiars.co.uk