

Safety Data Sheet

Copyright, 2015, Meguiar's, Inc. All rights reserved. Copying and/or downloading of this information for the purpose of properly utilising Meguiar's, Inc. products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from Meguiar's, Inc., and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document group:
 29-9787-2
 Version number:
 2.00

 Revision date:
 02/03/2015
 Supersedes date:
 07/07/2012

Transportation version number: 1.00 (09/01/2012)

This Safety Data Sheet has been prepared in accordance with the REACH Regulation (EC) 1907/2006 and its modifications.

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

G82, Perfect Clarity Glass Cleaner (24-125A): G8224, G8216

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified uses

Automotive.

1.3. Details of the supplier of the substance or mixture

Address: Meguiars United Kingdom Limited, 3 Lamport Court, Heartlands, Daventry, Northants, NN11 8UF

Telephone: +44 (0)870 241 6696 E Mail: info@meguiars.co.uk Website: www.meguiars.co.uk

1.4. Emergency telephone number

+44 (0)870 241 6696

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

CLP REGULATION (EC) No 1272/2008

CLASSIFICATION:

This material is not classified as hazardous according to Regulation (EC) No. 1272/2008, as amended, on classification, labelling, and packaging of substances and mixtures.

Dangerous substances(67/548/EEC)/preparations(1999/45/EC) directive

This product is not classified as hazardous according to EU Directive 1999/45/EC.

2.2. Label elements

CLP REGULATION (EC) No 1272/2008

Not applicable

SUPPLEMENTAL INFORMATION

Supplemental Hazard Statements:

EUH208 Contains Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-

isothiazol-3-one. May produce an allergic reaction.

Notes on labelling

Updated per Regulation (EC) No. 648/2004 on detergents.

Ingredients required per 648/2004: Contains: Perfumes, Mixture of Methylchloroisothiazolinone and Methylisothiazolinone (3:1).

Dangerous substances(67/548/EEC)/preparations(1999/45/EC) directive

Not applicable

Notes on labelling

Updated per Regulation (EC) 648/2004 on detergents.

Ingredients required per 648/2004: Contains: Perfumes, Mixture of Methylchloroisothiazolinone and Methylisothiazolinone (3:1).

2.3. Other hazards

None known.

SECTION 3: Composition/information on ingredients

Ingredient	CAS Nbr	EU Inventory	% by Wt	Classification
Non-Hazardous Ingredients	Mixture	•	90 - 100	
2-Butoxyethanol	111-76-2	EINECS 203- 905-0	1 - 5	Xn:R20-21-22; Xi:R36-38 (EU) R52 (Self Classified)
				Acute Tox. 3, H331; Acute Tox. 3, H311; Acute Tox. 4, H302; Skin Irrit. 2, H315; Eye Irrit. 2, H319 (CLP)
Propan-2-ol	67-63-0	EINECS 200- 661-7	1 - 5	F:R11; Xi:R36; R67 (EU)
				Flam. Liq. 2, H225; Eye Irrit. 2, H319; STOT SE 3, H336 (CLP)
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	55965-84-9		< 0.001	T:R23-24-25; C:R34; N:R50/53; R43 (EU)
				Acute Tox. 3, H331; Acute Tox. 3, H311; Acute Tox. 3, H301;
				Skin Corr. 1B, H314; Skin Sens. 1A, H317; Aquatic Acute 1,
				H400,M=10; Aquatic Chronic 1, H410,M=10 (CLP)

Please see section 16 for the full text of any R phrases and H statements referred to in this section Please refer to section 15 for the any applicable Notas that have been applied to the above components

For information on ingredient occupational exposure limits or PBT or vPvB status, see sections 8 and 12 of this SDS

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Wash with soap and water. If signs/symptoms develop, get medical attention.

Eve contact

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1 Information on toxicological effects

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Extinguishing media

In case of fire: Use a carbon dioxide or dry chemical extinguisher to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

Substance

Carbon monoxide.

Carbon dioxide.

Condition

During combustion.

During combustion.

5.3. Advice for fire-fighters

No special protective actions for fire-fighters are anticipated.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment. For larger spills, cover drains and build dykes to prevent entry into sewer systems or bodies of water.

6.3. Methods and material for containment and cleaning up

Contain spill. Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue with water. Seal the container. Dispose of collected material as soon as possible.

6.4. Reference to other sections

Refer to Section 8 and Section 13 for more information

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Keep out of reach of children. Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.)

7.2. Conditions for safe storage including any incompatibilities

Protect from sunlight. Store away from heat. Store away from acids. Store away from oxidising agents. Store away from areas where product may come into contact with food or pharmaceuticals.

7.3. Specific end use(s)

See information in Section 7.1 and 7.2 for handling and storage recommendations. See Section 8 for exposure controls and personal protection recommendations.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	CAS Nbr	Agency	Limit type	Additional comments
2-Butoxyethanol	111-76-2	UK HSC	TWA:123 mg/m3(25	Skin Notation
			ppm);STEL:246 mg/m3(50	
			ppm)	
Propan-2-ol	67-63-0	UK HSC	TWA:999 mg/m³(400	
			ppm);STEL:1250 mg/m ³ (500	
			ppm)	

UK HSC: UK Health and Safety Commission

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

Biological limit values

Ingredient	CAS Nbr	Agency	Determinant	Biological Specimen	Sampling Time	Value	Additional comments
2-Butoxyethanol	111-76- 2	UK EH40 BMGVs	Butoxyacetic acid	Creatinine in urine	EOS	240 mmol/mol	1

UK EH40 BMGVs : UK. EH40 Biological Monitoring Guidance Values (BMGVs)

EOS: End of shift.

8.2. Exposure controls

8.2.1. Engineering controls

Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapours/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

None required.

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing.

Gloves made from the following material(s) are recommended:

MaterialThickness (mm)Breakthrough TimeButyl rubber.No data availableNo data available

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapours

For questions about suitability for a specific application, consult with your respirator manufacturer.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state Liquid.

Appearance/Odour Sweet odour; off-white Odour threshold No data available.

pH 4.5 - 5.5

Boiling point/boiling rangeNo data available.Melting pointNo data available.Flammability (solid, gas)Not applicable.Explosive propertiesNot classifiedOxidising propertiesNot classified

Flash point > 93 °C (200 °F)

Autoignition temperatureNo data available.Flammable Limits(LEL)No data available.Flammable Limits(UEL)No data available.Vapour pressureNo data available.

Relative density 0.99 [*Ref Std*:WATER=1]

Water solubility Complete

Solubility- non-waterNo data available.Partition coefficient: n-octanol/waterNo data available.Evaporation rateNo data available.Vapour densityNo data available.Decomposition temperatureNo data available.ViscosityNo data available.

Density 0.99 g/ml

9.2. Other information

Volatile organic compounds (VOC)3.00 % weightVOC less H2O & exempt solventsNo data available.

SECTION 10: Stability and reactivity

10.1 Reactivity

This material is considered to be non reactive under normal use conditions

10.2 Chemical stability

Stable.

10.3 Possibility of hazardous reactions

Hazardous polymerisation will not occur.

10.4 Conditions to avoid

Heat.

10.5 Incompatible materials

Strong acids.

Strong oxidising agents.

10.6 Hazardous decomposition products

Substance

None known.

Condition

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 11 are based on UN GHS calculation rules and classifications derived from 3M assessments.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

Respiratory tract irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain. May cause additional health effects (see below).

Skin contact

Mild Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, and dryness.

Eve contact

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea. May cause additional health effects (see below).

Additional Health Effects:

Single exposure may cause target organ effects:

Blood effects: Signs/symptoms may include generalised weakness and fatigue, skin pallor, changes in blood clotting time, internal bleeding, and hemoglobinemia.

Prolonged or repeated exposure may cause target organ effects:

Blood effects: Signs/symptoms may include generalised weakness and fatigue, skin pallor, changes in blood clotting time, internal bleeding, and hemoglobinemia.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000 mg/kg
Overall product	Inhalation- Vapor(4 hr)		No data available; calculated ATE >50 mg/l
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Propan-2-ol	Dermal	Rabbit	LD50 12,870 mg/kg
Propan-2-ol	Inhalation- Vapor (4 hours)	Rat	LC50 72.6 mg/l
Propan-2-ol	Ingestion	Rat	LD50 4,710 mg/kg
2-Butoxyethanol	Dermal	Rabbit	LD50 400 mg/kg
2-Butoxyethanol	Inhalation- Vapor (4 hours)	Rat	LC50 2.2 mg/l
2-Butoxyethanol	Ingestion	Rat	LD50 560 mg/kg
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Dermal	Rabbit	LD50 87 mg/kg
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Inhalation- Dust/Mist (4 hours)	Rat	LC50 0.33 mg/l
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Ingestion	Rat	LD50 40 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Propan-2-ol	Multiple animal species	No significant irritation
2-Butoxyethanol	Rabbit	Irritant
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Rabbit	Corrosive

Serious Eve Damage/Irritation

Name	Species	Value
Propan-2-ol	Rabbit	Severe irritant
2-Butoxyethanol	Rabbit	Severe irritant
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-	Rabbit	Corrosive
one		

Skin Sensitisation

Name	Species	Value
Propan-2-ol	Guinea	Not sensitizing
2-Butoxyethanol	Guinea pig	Not sensitizing
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Human and animal	Sensitising

Photosensitisation

Name	Species	Value
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-	Human	Not sensitizing
one	and	
	animal	

Respiratory Sensitisation

For the component/components, either no data is currently available or the data is not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
Propan-2-ol	In Vitro	Not mutagenic
Propan-2-ol	In vivo	Not mutagenic
2-Butoxyethanol	In Vitro	Some positive data exist, but the data are not sufficient for classification
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	In vivo	Not mutagenic
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	In Vitro	Some positive data exist, but the data are not sufficient for classification

Carcinogenicity

Name	Route	Species	Value
Propan-2-ol	Inhalation	Rat	Some positive data exist, but the data are not
			sufficient for classification
2-Butoxyethanol	Inhalation	Multiple animal species	Some positive data exist, but the data are not sufficient for classification
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Dermal	Mouse	Not carcinogenic
Mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one	Ingestion	Rat	Not carcinogenic

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
Propan-2-ol	Ingestion	Some positive developmental data exist, but the data are not sufficient for classification	Rat	NOAEL 400 mg/kg/day	during organogenesis
Propan-2-ol	Inhalation	Some positive developmental data exist, but the data are not sufficient for classification	Rat	LOAEL 9 mg/l	during gestation
2-Butoxyethanol	Dermal	Not toxic to development	Rat	NOAEL 1,760 mg/kg/day	during gestation
2-Butoxyethanol	Ingestion	Some positive developmental data exist, but the data are not sufficient for classification	Rat	NOAEL 100 mg/kg/day	during organogenesis
2-Butoxyethanol	Inhalation	Some positive developmental data exist, but the data are not sufficient for classification	Multiple animal species	NOAEL 0.48 mg/l	during organogenesis
Mixture of 5-chloro-2-methyl-2H- isothiazol-3-one and 2-methyl-2H- isothiazol-3-one	Ingestion	Not toxic to female reproduction	Rat	NOAEL 10 mg/kg/day	2 generation
Mixture of 5-chloro-2-methyl-2H- isothiazol-3-one and 2-methyl-2H- isothiazol-3-one	Ingestion	Not toxic to male reproduction	Rat	NOAEL 10 mg/kg/day	2 generation
Mixture of 5-chloro-2-methyl-2H- isothiazol-3-one and 2-methyl-2H- isothiazol-3-one	Ingestion	Not toxic to development	Rat	NOAEL 15 mg/kg/day	during organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Propan-2-ol	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
Propan-2-ol	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
Propan-2-ol	Inhalation	auditory system	Some positive data exist, but the data are not sufficient for classification	Guinea pig	NOAEL 13.4 mg/l	24 hours
Propan-2-ol	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	poisoning and/or abuse
2-Butoxyethanol	Dermal	endocrine system	Some positive data exist, but the data are not sufficient for classification	Rabbit	NOAEL 902 mg/kg	6 hours
2-Butoxyethanol	Dermal	liver	Some positive data exist, but the data are not sufficient for classification	Rabbit	LOAEL 72 mg/kg	not available
2-Butoxyethanol	Dermal	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rabbit	LOAEL 451 mg/kg	6 hours
2-Butoxyethanol	Dermal	blood	Some positive data exist, but the data are not sufficient for classification	Multiple animal species	NOAEL Not available	not available
2-Butoxyethanol	Inhalation	blood	May cause damage to organs	Multiple animal species	NOAEL Not available	not available
2-Butoxyethanol	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
2-Butoxyethanol	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	
2-Butoxyethanol	Ingestion	blood	Causes damage to organs	Human	NOAEL Not available	poisoning and/or abuse
2-Butoxyethanol	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	poisoning and/or abuse
Mixture of 5-chloro-2- methyl-2H-isothiazol-3- one and 2-methyl-2H- isothiazol-3-one	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	me Route Target Organ(s) Value		Species	Test result	Exposure Duration	
Propan-2-ol	Inhalation	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 12.3 mg/l	24 months
Propan-2-ol	Inhalation	nervous system	All data are negative	Rat	NOAEL 12 mg/l	13 weeks
Propan-2-ol	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 400 mg/kg/day	12 weeks
2-Butoxyethanol	Dermal	blood	Some positive data exist, but the data are not sufficient for classification	Multiple animal species	NOAEL Not available	not available
2-Butoxyethanol	Dermal	endocrine system	All data are negative	Rabbit	NOAEL 150 mg/kg/day	90 days
2-Butoxyethanol	Inhalation	blood	May cause damage to organs though prolonged or repeated exposure	Rat	NOAEL 0.12 mg/l	90 days
2-Butoxyethanol	Inhalation	liver	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 2.4 mg/l	14 weeks
2-Butoxyethanol	Inhalation	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 0.15 mg/l	14 weeks
2-Butoxyethanol	Inhalation	endocrine system	Some positive data exist, but the	Dog	LOAEL 1.9	8 days

Page: 9 of 17

			data are not sufficient for classification		mg/l	
2-Butoxyethanol	Ingestion	blood	Causes damage to organs through prolonged or repeated exposure	Multiple animal species	NOAEL Not available	not available
2-Butoxyethanol	Ingestion	kidney and/or bladder	Some positive data exist, but the data are not sufficient for classification	Multiple animal species	NOAEL Not available	not available

Aspiration Hazard

For the component/components, either no data is currently available or the data is not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not agree with the EU material classification in Section 2 and/or the ingredient classifications in Section 3 if specific ingredient classifications are mandated by a competent authority. In addition, statements and data presented in Section 12 are based on UN GHS calculation rules and classifications derived from 3M assessments.

12.1. Toxicity

No product test data available.

Material	CAS Nbr	Organism	Type	Exposure	Test endpoint	Test result
Mixture of 5-	55965-84-9	Water flea	Experimental	48 hours	EC50	0.18 mg/l
chloro-2-						
methyl-2H-						
isothiazol-3-						
one and 2-						
methyl-2H-						
isothiazol-3-						
one						
Mixture of 5-	55965-84-9	Diatom	Experimental	72 hours	EC50	0.021 mg/l
chloro-2-						
methyl-2H-						
isothiazol-3-						
one and 2-						
methyl-2H-						
isothiazol-3-						
one						
Mixture of 5-	55965-84-9	Diatom	Experimental	72 hours	NOEC	0.01 mg/l
chloro-2-						
methyl-2H-						
isothiazol-3-						
one and 2-						
methyl-2H-						
isothiazol-3-						
one						
2-	111-76-2	Water flea	Experimental	48 hours	EC50	1,550 mg/l
Butoxyethanol						
2-	111-76-2	Green Algae	Experimental	72 hours	EC50	>1,000 mg/l
Butoxyethanol						
2-	111-76-2	Crustacea	Experimental	96 hours	EC50	89.4 mg/l
Butoxyethanol						

Page: 10 of 17

2-	111-76-2	Rainbow trout	Experimental	96 hours	LC50	1,474 mg/l
Butoxyethanol						
2-	111-76-2	Water flea	Experimental	21 days	NOEC	100 mg/l
Butoxyethanol						
2-	111-76-2	Green Algae	Experimental	72 hours	NOEC	130 mg/l
Butoxyethanol						
Propan-2-ol	67-63-0	Crustacea	Experimental	48 hours	EC50	1,400 mg/l
Propan-2-ol	67-63-0	Fathead	Experimental	96 hours	LC50	6,120 mg/l
		minnow				
Propan-2-ol	67-63-0	Algae	Experimental	24 hours	EC50	>1,000 mg/l
Propan-2-ol	67-63-0	Water flea	Experimental	21 days	NOEC	30 mg/l

12.2. Persistence and degradability

Material	CAS Nbr	Test type	Duration	Study Type	Test result	Protocol
Non- Hazardous Ingredients	Mixture	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Mixture of 5- chloro-2- methyl-2H- isothiazol-3- one and 2- methyl-2H- isothiazol-3- one	55965-84-9	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
2- Butoxyethanol	111-76-2	Experimental Biodegradation	14 days	BOD	96 % weight	OECD 301C - MITI test (I)
Propan-2-ol	67-63-0	Experimental Biodegradation	14 days	BOD	86 % weight	OECD 301C - MITI test (I)

12.3 : Bioaccumulative potential

Material	CAS Nbr	Test type	Duration	Study Type	Test result	Protocol
Non-	Mixture	Data not	N/A	N/A	N/A	N/A
Hazardous		available or				
Ingredients		insufficient for				
		classification				
Mixture of 5-	55965-84-9	Data not	N/A	N/A	N/A	N/A
chloro-2-		available or				
methyl-2H-		insufficient for				
isothiazol-3-		classification				
one and 2-						
methyl-2H-						
isothiazol-3-						
one						
2-	111-76-2	Experimental		Log Kow	0.83	Other methods
Butoxyethanol		Bioconcentrati				
		on				
Propan-2-ol	67-63-0	Experimental		Log Kow	0.05	Other methods
		Bioconcentrati				
		on				

12.4. Mobility in soil

Page: 11 of 17

Please contact manufacturer for more details

12.5. Results of the PBT and vPvB assessment

No information available at this time, contact manufacturer for more details

12.6. Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

See Section 11.1 Information on toxicological effects

Dispose of waste product in a permitted industrial waste facility. Empty drums/barrels/containers used for transporting and handling hazardous chemicals (chemical substances/mixtures/preparations classified as Hazardous as per applicable regulations) shall be considered, stored, treated & disposed of as hazardous wastes unless otherwise defined by applicable waste regulations. Consult with the respective regulating authorities to determine the available treatment and disposal facilities.

The coding of a waste stream is based on the application of the product by the consumer. Since this is out of the control of the manufacturer, no waste code(s) for products after use will be provided. Please refer to the European Waste Code (EWC - 2000/532/CE and amendments) to assign the correct waste code to your waste stream. Ensure national and/or regional regulations are complied with and always use a licensed waste contractor

EU waste code (product as sold)

20 01 30 Detergents other than those mentioned in 20 01 29.

SECTION 14: Transportation information

ADR/IMDG/IATA: Not restricted for transport.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Carcinogenicity

IngredientCAS NbrClassificationRegulation2-Butoxyethanol111-76-2Gr. 3: Not classifiableInternational Agency
for Research on Cancer

Global inventory status

Contact manufacturer for more information The components of this material are in compliance with the China "Measures on Environmental Management of New Chemical Substance". Certain restrictions may apply. Contact the selling division for additional information. The components of this material are in compliance with the provisions of the Korean Toxic Chemical Control Law. Certain restrictions may apply. Contact the selling division for additional information. The components of this material are in compliance with the provisions of Australia National Industrial Chemical Notification and Assessment Scheme (NICNAS). Certain restrictions may apply. Contact the selling division for additional information. The components of this material are in compliance with the provisions of Japan Chemical Substance Control Law. Certain restrictions may apply. Contact the selling division for additional information. The components of this material are in compliance with the provisions of Philippines RA 6969 requirements. Certain restrictions may apply. Contact the selling division for additional information. The components of this product are in compliance with the new substance notification requirements of CEPA. The components of this product are in compliance with the chemical notification requirements of TSCA.

15.2. Chemical Safety Assessment

Not applicable

SECTION 16: Other information

List of relevant H statements

H225	Highly flammable liquid and vapour.
H301	Toxic if swallowed.
H302	Harmful if swallowed.
H311	Toxic in contact with skin.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.
H331	Toxic if inhaled.
H336	May cause drowsiness or dizziness.
H400	Very toxic to aquatic life.
H410	Very toxic to aquatic life with long lasting effects.

List of relevant R-phrases

List of Televant IX-pi	ii ascs
R11	Highly flammable.
R20	Harmful by inhalation.
R21	Harmful in contact with skin.
R22	Harmful if swallowed.
R23	Toxic by inhalation.
R24	Toxic in contact with skin.
R25	Toxic if swallowed.
R34	Causes burns.
R36	Irritating to eyes.
R38	Irritating to skin.

R43 May cause sensitisation by skin contact.

R50/53 Very toxic to aquatic organisms. May cause long-term adverse effects in the aquatic environment.

R52 Harmful to aquatic organisms.

R67 Vapours may cause drowsiness and dizziness.

Revision information:

Revision Changes:

Section 1: Product name information was modified.

Page Heading: Product name information was modified.

Section 16: List of relevant R phrase information information was modified.

Section 3: Composition/ Information of ingredients table information was modified.

Section 13: EU waste code (product as sold) information information was modified.

Section 9: Flammability (solid, gas) information information was modified.

Section 15: Regulations - Inventories information was modified.

Section 2: EU Detergent Regulation label remarks information was modified.

Section 1: Address information was modified.

Copyright information was modified.

Section 9: Property description for optional properties information was modified.

Section 8: Occupational exposure limit table information was modified.

OEL Reg Agency Desc information was modified.

Section 11: Acute Toxicity table information was modified.

Section 11: Carcinogenicity Table information was modified.

Section 11: Serious Eye Damage/Irritation Table information was modified.

Section 11: Germ Cell Mutagenicity Table information was modified.

Page: 13 of 17

- Section 11: Additional Health Effects heading information was modified.
- Section 11: Skin Sensitization Table information was modified.
- Section 11: Reproductive Toxicity Table information was modified.
- Section 11: Skin Corrosion/Irritation Table information was modified.
- Section 11: Target Organs Repeated Table information was modified.
- Section 11: Target Organs Single Table information was modified.
- Section 11: Health Effects Inhalation information information was modified.
- Section 11: Health Effects Ingestion information information was modified.
- $Section \ 5: Fire Extinguishing \ media \ information \ information \ was \ modified.$
- Section 5: Fire Advice for fire fighters information information was modified.
- Section 6: Accidental release personal information information was modified.
- Section 6: Accidental release environmental information information was modified.
- Section 6: Accidental release clean-up information information was modified.
- Section 7: Conditions safe storage information was modified.
- Section 13: 13.1. Waste disposal note information was modified.
- Section 13: Standard Phrase Category Waste GHS information was modified.
- Section 4: First aid for eye contact information information was modified.

Two-column table displaying the unique list of H Codes and statements (std phrases) for all components of the given material, information was modified.

- Section 8: Eve protection information information was added.
- Section 12: Component ecotoxicity information information was added.
- Section 12: Persistence and Degradability information information was added.
- Section 12:Bioccumulative potential information information was added.
- Section 12: Component Ecotoxicity table Material column header information was added.
- Section 12: Component Ecotoxicity table CAS No column header information was added.
- Section 12: Component Ecotoxicity table Organism column header information was added.
- Section 12: Component Ecotoxicity table Type column header information was added.
- Section 12: Component Ecotoxicity table Exposure column header information was added.
- Section 12: Component Ecotoxicity table End point column header information was added.
- Section 12: Component Ecotoxicity table Result column header information was added.
- Section 12: Persistence and degradability table Material column header information was added.
- Section 12: Persistence and degradability table CAS No column header information was added.
- Section 12: Persistence and degradability table Test Type column header information was added.
- Section 12: Persistence and degradability table Duration column header information was added.
- Section 12: Persistence and degradability table Test Result column header information was added.
- Section 12: Persistence and degradability table Protocol column header information was added.
- Section 12:Bioccumulative potential table Material column header information was added.
- Section 12:Bioccumulative potential table CAS No column header information was added.
- Section 12:Bioccumulative potential table CAS No column header information was added.
- $Section\ 12: Bioccumulative\ potential\ table\ Test\ Result\ column\ header\ information\ was\ added.$
- Section 12:Bioccumulative potential table Protocol column header information was added.
- Section 12:Bioccumulative potential table Test Type column header information was added.
- Label: CLP Classification Header information was added.
- Label: CLP Classification information was added.
- Label: CLP Supplemental Hazard Statements Header information was added.
- $Label: CLP\ Supplemental\ Information\ -\ Header\ information\ was\ added.$
- Contains statement for sensitizers information was added.
- Contains statement for sensitizers information was added.
- Contains statement for sensitizers information was added.
- Section 2: Notes on labelling heading information was added.
- Section 15: Label remarks and EU Detergent information was added.
- Section 8: Occupational exposure limit table information was added.
- CLP Remark(phrase) information was added.
- Section 11: Photosensitisation table Name heading information was added.
- Section 11: Photosensitisation table heading information was added.
- Photosensitisation Table information was added.

Page: 14 of 17

- Section 11: Photosensitisation table Species heading information was added. Section 11: Photosensitisation table Value heading information was added. Section 2: 2.2 & 2.3. CLP REGULATION heading information was added. Section 8: Personal Protection Skin/hand information information was added.
- Section 8: Personal Protection Respiratory Information information was added.
- Section 12: Persistence and degradability table Study Type column header information was added. Section 12:Bioccumulative potential table Test Type column header information was added.
- Section 9: Odour Threshold information was added.
- Section 9: Solubility (non-water) information was added.
- Section 09: Decomposition Temperature information was added.
- Section 11: Single exposure may cause target organ effects heading information was added.
- Section 11: Prolonged or repeated exposure may cause target organ effects heading information was added.
- Section 11: Single exposure may cause standard phrases information was added.
- Section 11: Prolonged or repeated exposure may cause standard phrases information was added.
- Section 02: EU DPD 'Not applicable' text information was added.
- Section 02: EU CLP 'Not applicable' text information was added.
- Legend description information was added.
- BLV Reg Agency Desc information was added.
- Section 10: Hazardous decomposition products during combustion text information was added.
- Section 11: Disclosed components not in tables text information was added.
- Section 12: Classification Warning information was added.
- Section 11: Classification disclaimer information was added.
- Section 11: Aspiration Hazard text information was added.
- Section 8: 8.1.1 Biological limit values table heading information was added.
- Section 8: BLV table information was added.
- Section 8: BLV table ingredient column heading information was added.
- Section 8: BLV table cas nbr column heading information was added.
- Section 8: BLV table agency column heading information was added.
- Section 8: BLV table cas nbr column heading information was added.
- Section 8: BLV table biological specimen Column heading information was added.
- Section 8: BLV table sampling time Column heading information was added.
- Section 8: BLV table value Column heading information was added.
- Section 8: BLV table additional comments Column heading information was added.
- List of sensitizers information was added.
- Section 9: Flammability (solid, gas) information information was added.
- Section 11: Respiratory Sensitization text information was added.
- Section 11: Skin Sensitization table Name heading information was added.
- Section 11: Skin Sensitization table Species heading information was added.
- Section 11: Skin Sensitization table Value heading information was added.
- Section 11: Serious Eye Damage/Irritation table Name heading information was added.
- Section 11: Serious Eye Damage/Irritation table Species heading information was added.
- Section 11: Serious Eye Damage/Irritation table Value heading information was added.
- Section 11: Skin Corrosion/Irritation table Name heading information was added.
- Section 11: Skin Corrosion/Irritation table Species heading information was added.
- Section 11: Skin Corrosion/Irritation table Value heading information was added.
- Section 11: Germ Cell Mutagenicity table Name heading information was added.
- Section 11: Germ Cell Mutagenicity table Route heading information was added.
- Section 11: Germ Cell Mutagenicity table Value heading information was added.
- Section 11: Specific Target Organ Toxicity repeated exposure table Name heading information was added.
- Section 11: Specific Target Organ Toxicity repeated exposure table Route heading information was added.
- Section 11: Specific Target Organ Toxicity repeated exposure table Target Organ(s) heading information was added.
- Section 11: Specific Target Organ Toxicity repeated exposure table Value heading information was added.
- Section 11: Specific Target Organ Toxicity repeated exposure table Species heading information was added.
- Section 11: Specific Target Organ Toxicity repeated exposure table Test Result heading information was added.
- Section 11: Specific Target Organ Toxicity repeated exposure table Exposure Duration heading information was added.
- Section 11: Specific Target Organ Toxicity single exposure table Name heading information was added.

- Section 11: Specific Target Organ Toxicity single exposure table Route heading information was added.
- Section 11: Specific Target Organ Toxicity single exposure table Target Organ(s) heading information was added.
- Section 11: Specific Target Organ Toxicity single exposure table Value heading information was added.
- Section 11: Specific Target Organ Toxicity single exposure table Species heading information was added.
- Section 11: Specific Target Organ Toxicity single exposure table Test Result heading information was added.
- Section 11: Specific Target Organ Toxicity single exposure table Exposure Duration heading information was added.
- Section 11: Reproductive and/or Developmental Effects table Name heading information was added.
- Section 11: Reproductive and/or Developmental Effects table Route heading information was added.
- Section 11: Reproductive and/or Developmental Effects table Value heading information was added.
- Section 11: Reproductive and/or Developmental Effects table Species heading information was added.
- Section 11: Reproductive and/or Developmental Effects table Test Result heading information was added.
- Section 11: Reproductive and/or Developmental Effects text information was added.
- Section 11: Carcinogenicity table Name heading information was added.
- Section 11: Carcinogenicity table Route heading information was added.
- Section 11: Carcinogenicity table Species heading information was added.
- Section 11: Carcinogenicity table Value heading information was added.
- Section 8: glove data Material heading information was added.
- Section 8: glove data Thickness heading information was added.
- Section 8: glove data Breakthrough Time heading information was added.
- Section 8: glove data value information was added.
- Section 8: Eye/face protection information information was deleted.
- Section 8: Skin protection recommended gloves information information was deleted.
- Section 8: Eye/face protection text information was deleted.
- Section 8: Respiratory protection recommended respirators information was deleted.
- Section 2: Contains heading information was deleted.
- Section 2: Safety phrases heading information was deleted.
- Section 2: Risk phrases heading information was deleted.
- Section 2: Symbols heading information was deleted.
- Section 15: Symbol information information was deleted.
- Section 15: Symbol information information was deleted.
- Section 2: Label ingredient information information was deleted.
- Section 12: Acute aquatic hazard information information was deleted.
- Section 12: Chronic aquatic hazard heading information was deleted.
- Section 12: Acute aquatic hazard heading information was deleted.
- Section 12: Chronic aquatic hazard information information was deleted.
- Prints No Data if Component ecotoxicity information is not present information was deleted.
- Prints No Data if Persistence and Degradability information is not present information was deleted.
- Prints No Data if Bioccumulative potential information is not present information was deleted.
- Section 8: mg/m³ key information was deleted.
- Section 8: ppm key information was deleted.
- Section 15: Ingredient information per Regulation EC No. 648/2004 information was deleted.
- Section 11: Aspiration Hazard Table information was deleted.
- Section 11: Classification disclaimer information was deleted.
- Section 11: Exposure Duration table heading information was deleted.
- Section 11: Respiratory Sensitization Table information was deleted.
- Section 11: Test Result table heading information was deleted.
- Section 11: Health Effects Other information information was deleted.
- Section 12: Classification Warning information was deleted.
- Risk phrase None information was deleted.
- Section 15: Ingredient information per Regulation EC No. 648/2004 heading information was deleted.

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

Page: 16 of 17

G82, Perfect Clarity Glass Cleaner (2	24-125A); G8224. G82	216		
and a second control of the second of the se				
	5000			
Meguiar's, Inc. United Kingdom N	MSDSs are availabl	e at www.meguia	rs.co.uk	